Zero-Shot Learning to Manage a Large Number of Place-Specific Compressive Change Classifiers
نویسنده
چکیده
With recent progress in large-scale map maintenance and long-term map learning, the task of change detection on a large-scale map from a visual image captured by a mobile robot has become a problem of increasing criticality. Previous approaches for change detection are typically based on image differencing and require the memorization of a prohibitively large number of mapped images in the above context. In contrast, this study follows the recent, efficient paradigm of change-classifier-learning and specifically employs a collection of place-specific change classifiers. Our change-classifier-learning algorithm is based on zero-shot learning (ZSL) and represents a place-specific change classifier by its training examples mined from an external knowledge base (EKB). The proposed algorithm exhibits several advantages. First, we are required to memorize only training examples (rather than the classifier itself), which can be further compressed in the form of bag-of-words (BoW). Secondly, we can incorporate the most recent map into the classifiers by straightforwardly adding or deleting a few training examples that correspond to these classifiers. Thirdly, we can share the BoW vocabulary with other related task scenarios (e.g., BoW-based self-localization), wherein the vocabulary is generally designed as a rich, continuously growing, and domain-adaptive knowledge base. In our contribution, the proposed algorithm is applied and evaluated on a practical long-term cross-season change detection system that consists of a large number of place-specific object-level change classifiers.
منابع مشابه
Link the Head to the "Beak": Zero Shot Learning from Noisy Text Description at Part Precision
In this paper, we study learning visual classifiers from unstructured text descriptions at part precision with no training images. We propose a learning framework that is able to connect text terms to its relevant parts and suppress connections to non-visual text terms without any part-text annotations. For instance, this learning process enables terms like “beak” to be sparsely linked to the v...
متن کاملProbabilistic Zero-shot Classification with Semantic Rankings
In this paper we propose a non-metric rankingbased representation of semantic similarity that allows natural aggregation of semantic information from multiple heterogeneous sources. We apply the ranking-based representation to zeroshot learning problems, and present deterministic and probabilistic zero-shot classifiers which can be built from pre-trained classifiers without retraining. We demon...
متن کاملSemantic Concept Discovery for Large-Scale Zero-Shot Event Detection
Semantic Concept Discovery for Large-Scale Zero-Shot Event Detection Report Title We focus on detecting complex events in unconstrained Internet videos. While most existing works rely on the abundance of labeled training data, we consider a more difficult zero-shot setting where no training data is supplied. We first pre-train a number of concept classifiers using data from other sources. Then ...
متن کاملNumerical and Experimental Evaluation of Residual Stress and Fatigue Strength of Steel CK35 in Shot Peening Process
In shot peening process the work piece surface is struck by a large number of balls and compressive residual stress is generated on the surface. So, mechanical properties such as fatigue strength, stress corrosion resistance, smooth shape and ... will improve. In this paper, the balls with a speed of 100 to 200 m/s were struck on the steel samples and fatigue strength compared with specimens wi...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1709.05397 شماره
صفحات -
تاریخ انتشار 2017